18 research outputs found

    Malleability of uranium: Manipulating the charge-density wave in epitaxial films

    No full text
    We report x-ray synchrotron experiments on epitaxial films of uranium, deposited on niobium and tungsten seed layers. Despite similar lattice parameters for these refractory metals, the uranium epitaxial arrangements are different and the strains propagated along the orthorhombic a axis of the uranium layers are of opposite sign. At low temperatures these changes in epitaxy result in dramatic modifications to the behavior of the charge-density wave in uranium. The differences are explained with the current theory for the electron-phonon coupling in the uranium lattice. Our results emphasize the intriguing possibilities of producing epitaxial films of elements that have complex structures like the light actinides uranium to plutonium.JRC.E.6-Actinide researc

    Simultaneous Individual and Dipolar Collective Properties in Binary Assemblies of Magnetic Nanoparticles

    Get PDF
    Applications based on aggregates of magnetic nanoparticles are becoming increasingly widespread, ranging from hyperthermia to magnetic recording. However, although some uses require collective behavior, others need a more individual-like response, the conditions leading to either of these behaviors are still poorly understood. Here, we use nanoscale-uniform binary random dense mixtures with different proportions of oxide magnetic nanoparticles with low/high anisotropy as a valuable tool to explore the crossover from individual to collective behavior. Two different anisotropy scenarios have been studied in two series of binary compacts: M1, comprising maghemite (gamma-Fe2O3) nanoparticles of different sizes (9.0 nm/11.5 nm) with barely a factor of 2 between their anisotropy energies, and M2, mixing equally sized pure maghemite (low-anisotropy) and Co-doped maghemite (high-anisotropy) nanoparticles with a large difference in anisotropy energy (ratio > 8). Interestingly, while the M1 series exhibits collective behavior typical of strongly coupled dipolar systems, the M2 series presents a more complex scenario where different magnetic properties resemble either "individual-like" or "collective", crucially emphasizing that the collective character must be ascribed to specific properties and not to the system as a whole. The strong differences between the two series offer new insight (systematically ratified by simulations) into the subtle interplay between dipolar interactions, local anisotropy and sample heterogeneity to determine the behavior of dense assemblies of magnetic nanoparticles
    corecore